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Direct limits and tensor products of difference posets are studied. In the spirit
of a recent paper by Isham, a potential model for an “unsharp histories” approach
to quantum theory based on difference posets as abstract models for the set of
effects is considered. It is shown that the set of all histories in this approach has
an algebraic structure of a difference poset.

1. INTRODUCTION

In the historic paper by Birkhoff and von Neumann (1936), the notion
of quantum logic was introduced to the description of quantum mechanical
events. In the axiomatic approach to quantum mechanics, the event structure
of a physical system is identified with a quantum logic [a ¢-orthomodular
poset or lattice (Ptdk and Pulmannovd, 1991; Varadarajan, 1968/1970)]. More
general structures, orthoalgebras, have been introduced by Foulis and Randall
(1972; Randall and Foulis, 1973) and they enable one to introduce a tensor
product (Bennett and Foulis, 1993), which is an important tool to describe
coupled systems.

Events of quantum logics or orthoalgebras have a “yes—no” character
and therefore they do not describe unsharp measurements. To include them,
the set of all effects is to be considered in the Hilbert space approach to
quantum mechanics (Busch et al., 1991), i.e., the set €(H) of all self-adjoint
operators on the Hilbert space H with spectra in the interval [0, 1]. Then
“yes—no” events, i.e., those having spectrum in the two-point set {0, 1},
correspond to orthogonal projection operators on H.

Recently, there has appeared a new mathematical model, difference
posets (or D-posets, for short), introduced in Kopka and Chovanec (1994).
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D-posets generalize quantum logics and orthoalgebras as well as the set of
all effects. In this model, the difference operation is a primary notion from
which we derive other, usual notions important for measurements. We note
that the same structure, called “effect algebra,” can be obtained on the basis
of another partial binary operation, a “plus” operation (Foulis and Bennett,
1994; Giuntini and Greuling, 1989; Pulmannovd, 1994; Hedlikov4 and Pul-
mannovd, n.d.), which appears also in orthoalgebras.

In a recent paper by Isham (n.d.) it is shown that the Gell-Mann and
Hartle (1990a—c) axioms for a generalized “histories” approach to quantum
theory can be modified in such a way that each history proposition in the
standard approach is represented by a genuine projection operator. This pro-
vides a valuable insight into the algebraic structure of general history theories,
and also provides a number of potential models for theories of this type. Our
aim is to present one of those models in the present paper. We use the
partial algebraic structure of D-posets as models for the sets of all quantum
mechanical effects. A homogeneous history (or a history filter) is modeled
by a finite sequence of elements of a D-poset. We introduce a modification
of Isham’s axioms. Under these axioms, the set of all histories admits a
structure of a D-poset. We show that it can be obtained by a construction of
a direct limit of a directed system of finite tensor products of D-posets. The
standard approach is obtained as a special case.

We note that since effects represent unsharp measurements, we obtain
“unsharp” histories, where a history can “exclude” itself. At this point, a
many-valued logic comes into the picture. However, we provide a purely
algebraic description; logical and philosophical analysis is not the subject of
the present paper.

2. BASIC FACTS ABOUT D-POSETS

A D-poset, or a difference poset, is a partially ordered set’ L with a
partial ordering =, the greatest element 1, and with a partial binary operation
©: L X L — L, called a difference, such that, for a, b € L, b © a is defined
if and only if a =< b, and the following axioms hold for a, b, ¢ € L:

(DPi) bOa=h.
(DPii) bO (bOa) =a.
(DPiil) as=b=c=cOb=cOaand(cOa)O(cOb)=bOa.

The following statements have been proved in K6pka and Chovanec
(1994).

2 As usual, we shall assume that card L = 2.
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Proposition 2.1. Let a, b, ¢, d be elements of a D-poset L. Then:

(i) 1© 1 is the smallest element of L; denote it by 0.
(i) a®©0=a.

(i) a©a=0.

iv) a=b=2bSa=0b =a.

V) a=b=>bDa=besa=0.

i) a=b=c=2bOa=cBCaand(cC )OS b a)=cOb.
(Vi) b=, a=cOb=2b=cBaand(cObh)Oa=(cSa

O b.
iill) a=b=c=a=cObOaand(cC bOa)Sa=cObh.

Remark 2.2 (Navara and Ptak, n.d.). A poset L with the smallest and
greatest elements O and 1, respectively, and with a partial binary operation
©: L X L — Lsuch that b © ais defined iff a =< b, and fora, b, ¢ € L we have

(i) a®©0=aq,
(i) fasb=c,thenc©b=cBaand (c©a)O (cOb) =
b O a,
is a D-poset.

For any element ¢ € L we put
at:=10a

Then (i) a** = a; (ii) a =< b implies b* =< g*. Two elements a and b of L
are orthogonal, and we write a L b, iff a < b* (iff b = at).

Now we introduce a partial binary operation &: L X L — L such that
an element ¢ = g @ b in L is defined iff @ L b, and for ¢ we have b < ¢
and a = ¢ © b. The partial operation € is defined correctly because if there
exists ¢; € L with b = ¢, and a = ¢; © b, then, by (viii) of Proposition 2.1
and (DPii), we have

(10O b=10c=1O(OhNObL=1O¢
which implies ¢ = ¢;. Moreover,
c=a®b= (@@ Ob!=0Oat 2.0

The operation © is commutative and associative. Very important exam-
ples of difference posets are orthomodular posets (= quantum logics), orthoal-
gebras, and sets of effects.
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Example 2.3. An orthomodular poset (OMP), that is, a partially ordered
set L with an ordering =, the smallest and greatest elements 0 and 1, respec-
tively, and an orthocomplementation .L: L — L such that

(OMi) at* =aforanya e L,

(OMii) avat =1foranya € L,

(OMiii) if a < b, then b+ < a*t,

(OMiv) if a < b* (and we write @ L b), thenav b € L,
(OMv) ifa =<b,thenb = a v (a v b)* (orthomodular law),

is a D-poset, when b © a := b A a'.

Example 2.4. An orthoalgebra, that is, a set L with two particular
elements 0, 1, and with a partial binary operation €: L X L — L such that
for all a4, b, ¢ € L we have

(OA1)) iifadbelL thenb®ae Landa®b = b D a(commuta-
tivity),

(OAil) ifbDceLanda® b Dc) e L,thena®b e L and
(@®b)PcelL,anda® (b D)= (aD b)D c(associativity),

(OAiii) for any a e L there is a unique b € L such that a © b is
defined, and @ © b = 1 (orthocomplementation),

(OAiv) if a © a is defined, then a = 0 (consistency),

is a D-poset if b © a := (a D b')*, where b+ is a unique element ¢ in L
such that b & ¢ = 1.

If the assumptions of (OAii) are satisfied, we write a © b © ¢ for the
element (a D b) Dc=a® (b Dc)in L.

We note that if L is an orthomodular poset and a D b := a v b whenever
a 1 bin L, then L with 0, 1, € is an orthoalgebra. The converse statement
does not hold, in general. We recall that an orthoalgebra L is an OMP iff
al bimpliesavb e L.

By Navara and Ptk (n.d.) we conclude that a D-poset L with 0, 1, and
@, defined by (2.1), is an orthoalgebra if and only if ¢ =< 1 © a implies
a = 0. Therefore, it is not hard to give many examples of D-posets which
are not orthoalgebras; such ones are sets of effects:

Example 2.5. The set €(H) of all Hermitian operators A on H such that
0 = A = |, where ] is the identity operator on H, is a difference poset which
is not an orthoalgebra; a partial ordering = is defined via A < B iff (Ax, x)
= (Bx, x),x € H,and C = B © A iff (Ax, x) — (Bx, x) = (Cx, x), x € H.

On the other hand, if in the definition of an orthoalgebra, axiom (OAiv)
is replaced by a weaker axiom
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(EAiv) a @ 1 is defined implies a = 0

we obtain so-called effect algebra or weak orthoalgebra (Foulis and Bennett,
1994; Giuntini and Greuling, 1989), which is equivalent to a D-poset (Foulis
and Bennett, 1994; Pulmannova, 1994).

Let A, B be D-posets. A mapping f: A — B is a morphism if

b O a= 3f(b) S fla)y and f(b ©a) = f(b) © fla)
A morphism f: A — B is a full morphism if
IfB) O fla) and f(b) O fla) e f[A]
= da;, by e A suchthat 3b, S a; and fla) = f(ay), f(b) = f(b)
A morphism f: A — B is a closed morphism (or a monomorphism) if
fB)Ofla)=> IS a
It is easily seen that if f: A — B is a morphism, then:

M ) =1
(i) flabH) = fla)~.
(iii) Ja D b implies If(a) D f(b) and f(a D b) = f(a) D f(b).
We recall that a morphism f is an isomorphism if it is a bijection and f~! is
also a morphism. Equivalently, if f is surjective and closed.

Let A be a D-poset. A relation R C A X A is called a congruence
(relation) on A if it satisfies the following:

(i) R is an equivalence relation on A.
(ii) If a,Rb,, a,Rb, and a, © a,, b, © b exist, then a, © a;Rb, S b,.

R will be called a closed congruence iff R satisfies in addition the following:
(i) If a,Rb|, a;Rb, and a, © a, exists, then b, © b, exists.

We note that (iii) is equivalent to the following:
(iii)* a;Rby, a7 L ay = b, L a,.

Let A be a D-poset and R a congruence on A. By & we denote the congruence
class of @ = A with respect to R, and we define as usual A/R := {d: a &
A}, the set of all congruence classes of elements of A, and A: A — A/R, a
— d the natural projection from A onto A/R. In order to get a ©-operation
on A/R, the quotient of A with respect to R, we define

bOais defined iff there are b, € b, a, € asuch that b, © q, is defined,
and then 5© ad = (b, © a;)” = h(b, © a))
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Then © is well-defined and the natural projection h: A — a/R is a full and
surjective morphism. % is a closed morphism iff R is a closed congruence.’

For more details about morphisms and congruences of partial algebras
see Burmester (1986).

Definition 2.6. (i) A directed system (of D-posets) is a family A, :=
Asfir Ai— A; 0, j e 1 i = j), where [ := (I, =) is a directed poset, A; is
a D-poset for each i € I, and each f; is a morphism (i = j), such that:

(i1) fi =1y foreveryi e I
(12) Ifi=j=minl then f,.fi = fim

(ii) Let A; be a directed system of D-posets; then f:= ((fi: A; = A;i € 1),
A) is called its direct limit iff the following hold:

(iil) A is a D-poset; f; is a morphism for each i € L

(ii2) Ifi=jinl thenf fu fi (i.e., fis compatible with A)).

(ii3) Ifg:= ((g: Ai > B, i € I), B) is any system compatible with A,
(i.e., g;f; = gi for all i = j in I), then there exists exactly one
morphism g: A — B such that gf; = g, for every i € [ (i.e., one
has commutativity of the diagram in Fig. 1).

Often only the object A above is denoted by lim_, A,.

It is easy to see that every direct limit is unique up to isomorphism.
The existence of direct limits can be obtained from more general consideration
(e.g., Burmester, 1986). For the convenience of the reader, we give here a
proof specialized to D-posets.

Theorem 2.7. Let A; be a directed system of D-posets, where f;; is a
morphism for every i, j € I, i = j. Then a direct limit exists.

Proof. Put A = U, A; and define a relation = on A as follows: we put
=b(a € A, b € A)) if there is k € I with i, j = k such that fy(a) = f(b)

A gi

B

A
Fig. 1

3We note that to get a D-poset structure on A/R, some more conditions on R are needed, in
general (see Pulmannova, n.d.).
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in A;. Let us choose an arbitrary k; € I with i, j = k;. Then for any [ € [
with k, k; = [, the following equalities hold:

fula) = ﬁqlfik;(a)
fu@) = fufula) = fklfjk(b) = ];1 (b)
f}l(b) = ﬁqujkl(b)

Hence
S (@ = fi,(b)

Reflexivity and symmetry of the relation = are evident. To prove transitivity,
leta =band b =c, wherea € A;, b € A;, c € A.. Then there are [}, [,
Iwith i,j = 1,,j, k = b, and fy(a) = f,,(b) and f,,(b) = fu,(c). Let I}, [, =
l; then fu(B) = fufu,() = fufula) = fula), and fy(b) = frufi(b) =
S fur(©) =~fk,(c), hence f;(a) = fu(c), so that a = ¢. Put A := A/ =. We
prove that A can be endowed with a structure of a D-poset. Leta, b € A, a
€ A, b € A;and let @ = a/ =, b = b/ = be the corresponding equivalence
classes in A. We define a partial binary operation © on A as follows:

b © a exists iff there is k € I, i, j < k, and
fid) © fula) is defined in Ay
then b© d = (fjk(b) Gfik(a))~

To prove that the operation © is well defined, let a,, b; be any other repre-
sentants with a; € A;, b) € A;. There is | € I with iy, j, k = [, and

fj“;l(bl) = fjl(b) = fklfjk(b)
fi,l(al) = fula) = fufu(a)

Now fi(b) © fula) exists in A, implies f;;(b)) © fi,(a;) exists in A;, and
Sin(b1) eftll(aﬂ = fu(fix(b) S fiu(@), hence f;,,(b;) in,/(al) = fi(b) © fula).

Clearly, | = Ufa € Az Jj =i, f(a) = 1;},0 = Ufa € Az Jj =4,
fila) = 0;}, where 1; and 0; are the greatest and the smallest elements in
A, respectively.

Define@ < biff b O dexists. Leta<b=¢,anda € A, b e Ajc e Ay
be any representants. There is / € I with i, j, k = [, and f;(a) = f;;(b) = fu(c)
hold in A;. The fact that A, is a D-poset implies that © is a difference operation
on A. From the construction it follows that = restricted to A; foreach i e Iisa
congruence relation. Forevery i € I, let f;: A; — A be the natural projection f;(a)
=qd.Ifa e A;andi < j thenforany k,i = j < k, fy(a) = fifii(a), so thata =
fii(a), and hence f;f;; = f..
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Let g := ((g: A; = B, i € I), B) be any system compatible with A,.
Define g: A — B via g(f.(a)) = g:(a). Now f;(a) = f.(b), a, b e A, iff there
isj € 1,i = j with f;(a) = f;(b). But then g;(a) = g,f;(a) = gf;(b) = gb),
hence g is a well-defined morphism. Clearly, g is unique. This concludes the
proof that A = lim_, A, =

Corollary 2.8. If A;, i € I, in a directed system A; are orthoalgebras
(orthomodular posets) then the direct limit lim_, A; is also an orthoalgebra
(orthomodular poset).

Proof. According to Navara and Ptdk (n.d.), a D-poset is an orthoalge-
bra iff

D a=1Qa=a=0.
A D-poset is an orthomodular poset iff (i) holds along with the following:
() albblcclaimplya=(l©c)Ob.

Indeed, if A is an OMP, then b © a = b A @' for a = b, and (ii) becomes
a = b' A ¢'. Conversely, recall that an orthoalgebra is an OMP iff a L b,
blc,claimplya®b L c. Now if (ii) holds, then a = ((1 S ¢) © b)
©d=((19c)©Od)S b, whichimpliesa® b=(16c)6d=160c.

From the proof of Theorem 2.7 it can be derived that conditions (i), (ii)
for the difference © are satisfied in lim_, A, if they are satisfied in every A,
iel n

In Dvurecenskij (1994) the notions of a bimorphism and tensor product
of two D-posets are introduced. These notions can be generalized to any
finite number n € IN of D-posets in a natural way.

Definition 2.9. Let Ay, A,, ..., A,, B be D-posets. A mapping B: A; X
-+« X A, — B is called an n-morphism (or a multimorphism in general) iff:

(i) abeA,alb qgeA,jFil=Iij=n,imply B(u)<, L
B(v))j<n, Where u; = q; = v;, j # i, and w; = a, v, = b, and
B((u)) ® B((v)) = B((z)), where z; = q;, j # i,z = a; D b;.

) B, L,..., =1

Let B: A; X A; -+ X A, = B be a multimorphism. To simplify our
considerations, we introduce the following conventions.

Let N = {1, 2, ..., n} be a finite sequence and K = {k;, ..., k,},
m =< n, a subsequence of N. For any a = (ay, ..., a,) € Ay, X - X
Ay, we define the following:

() @™ = (@)=, is the element in A; X --- X A, such that a; =
fori=kiandg, = 1ifi ¢ K.
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() PBEM: A, X -+ X A, — Bis amapping defined by B*¥(a) = B(a*).

Clearly, B*V is a multimorphism. In particular, if K = {j}, then B!V: 4; —
B is a morphism.

Let K := {k, ..., k,} be a subsequence of {1, 2, ..., n} =: N. For
any a := (@)iex and b := (b)jemg let a*™ = (4;);=, be such that u; = a;,
fori = k; e K, u; = b, for j € N\K. Clearly a*¥ = a*"!.

Lemma 2.10. Let B: A; X -+ X Ay — B be a multimorphism. Let N
= {19 27 LR n}v K:= {kl’ cecs kn} Q Na a = (ai)ie[G b = (bi)iEK’ ¢ =
(ienis d = (i If Bl@®™) L BB*Y), then Ba*™) L BG*™). In
particular, if B: A, X A, — B is a bimorphism, then a | b{a, b € A)) =
Bla, ¢y L B(b, d) for any ¢, d € A,.

Proof. We will proceed by induction of card(N\K).

If cardN\K) = 1, N\K = {j}, then B(@*") = B(a*¥<) @ B(aX™");
BLEN) = B(BHXN4)y @ B(WXN") for any ¢, d € A;, where ¢+ = 1, O ¢, d*
= 11 @ d, and

B(a™) ® BB = (Ba™) © (B(a™) ® (B ® BB

implies that B(a’™<) @ B9 exist, hence B(a*M<) L BHXN),

If card(N\K) = k, we choose i, € N\K, and define ¢y = (U)icmi Ui,
=Cip t; = 1,0 # oy do = Wdiemio Vig = digs vi = 1, i # ip. By the first
part of the proof, B(a*™<0) 1 B(HXN4). Now we can replace K by K U {iy},
and we obtain the desired result applying the induction hypothesis (to appro-
priately defined a’, b', ¢’, d' replacing a, b, c, d). ®

Definition 2.11. Let Ay, ..., A, be D-posets. We say that a pair (R, 1)
consisting of a difference poset R and a n-morphism 7: A; X -+ X A, — R
is a tensor product of A, A,, . . ., A, iff the following conditions are satisfied:

(1) If Lis a D-poset and B: A; X --- X A, — L is a n-morphism,
there exists a morphism ¢: R — Lsuchthat B = ¢ O 7.

(ii) Every element of R is a finite orthogonal sum of elements of the
form 1((a));<,) wWith a; € A, | = n.

Clearly, if a tensor product exists, it is unique up to isomorphism.

The following statement is a generalization of Theorem 7.3 in DvureCen-
skij (1994); the proof of it can be obtained by a modification of the proof
of the latter theorem.

Theorem 2.12. A tensor product of D-posets Ay, . . ., A, exists iff there
is at least one difference poset L and an #n-morphism B: A X --- X A, = L.

As a corollary we obtain that a tensor product of €(H), i = 1,2,...,
n, where €(H,) is the set of all effects on the Hilbert space H;, in the category
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of D-posets exists. Indeed, we take for L in Theorem 2.12 the set €(H; ®
--- @ H,) of all effects on the Hilbert space tensor product H; ® --- @ H,,.

We note that if in a class of D-posets a tensor product of any two
elements exists, then a tensor product of n elements exists, too. This can be
proved by induction according to the following considerations.

Let Ay, ..., A, be D-posets from the considered class. Let (B, 3) be
the tensor product of Ay, ..., A,_;, and let (C, v) be the tensor product of
B, A,. Define §: Ay X +* X Aoy X A, = Cby Yay, ..., dpy, a,) =
Y({(Bay, - .., a,—), a,). Clearly, ¥ is an n-morphism. We claim that (C, ¥)
is a tensor product of Ay, ..., A,_,, A,. It is easily seen that every element
in C is a finite orthogonal sum of elements of the form y(B(ay, ..., a,—1),
a) = ¥ay, ..., -1, a,). Let ke Ay X -+ X A,y X A, — D be an n-
morphism into a D-poset D in the same class. Put N := {1, ..., n}, K :=
{1,...,n—1}. Then k"™ A; X .-+ X A,_; = D is an (n — 1)-morphism.
Therefore, there exists a morphism ¢: B — D with ¢ 0 B = kX", Now define
a mapping R by R(B(ay, ..., a,-1), @) = k(ay, ..., a1, ay).  Blay, . . .,
an—l) 1 B(bl’ R} bn—~1)7 then (b © B(ah R an—l) 1 d) o B(bl’ s
b,—1); hence

KMay, ..., a,_) L XNb,, ..., b,_y)
and Lemma 2.10 implies that
k(@ ..., Gpey, ) = R(Blay, ..., au-y), ay)
1 kb, ..., byey, b)) = R(BODy, ..., beoy), by)

Hence & can be extended to a bimorphism from B X A, to D. Then there is
a morphism {: C — D such that y 0y = K, and

lb o ;?(alv DI ) anﬂl’ an) = ll’ o 'Y(B(ah “rey an—l)’ an)
= K(B(ah LR} an—-l)’ an) = K(al’ <oy Qp—ys an)

ie., ¢ © 9 = k. This proves the universal property of (C, ¥).

In what follows, we will often denote a tensor product (R &) of
A, ...,A,byR=A ® - ® A,, and write a; ® -+ ® a, instead of
Ray, ..., a,).

Theorem 2.13. Let A, ..., A, be D-posets and let the tensor product
A ® - ® A, exist. Then:

(i) Forany K= {k,...,k,} ©{L,2,...,n} =N, atensor product
A, B, Ay of Ay, ..., Ay, exXists.

(i) Foranyl =m=nA Q@ - QA =4, 8,4, &
At B - B, ,n A,), where Q,, denotes the m-morphism in
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the tensor product of Ay, . .., A,, and ®,_,, denotes the (n — m)-
morphism in the tensor product of A1, ..., A,.

Proof. Item (i) is a direct consequence of Theorem 2.12 and the fact
that ®%V: A, X -+ X A, —- A ® - B A, &V (g, ..., aq,) =8,
((ag - - -, @, ™) is an m-morphism.

(ii) It can be proved by induction using similar methods as in the remarks
preceding Theorem 2.13. =

Proposition 2.14. Let T be any set, and let (7, C) be a directed poset
of finite subsequences of elements of 7 directed by inclusion. For every ¢
T, let A, be a D-poset. Assume that forevery F ¢ I, F = {¢t), ..., t.}, (AF,
®p) is a tensor product of 4,, ..., A, }. Then forevery F, G ¢ I, FC G
there is a morphism fp;: Ap — Ag such that (Ag, frg) is a directed system.

Proof. Let F,G € J, F C G,

G={a,...,a,}, F= {alk|""’a'km}’ m=n

Let (Ap, ®F), (Ag, ®¢) be the corresponding tensor products. Then
®{;G: A‘k] X X A’km - AG

is a multimorphism; therefore there is a (unique) morphism frg: Ar — Ag
such that fr; © @ = QEC. Clearly frr = idr (Where idr denotes identity on A).

NowletF,G,He 9, FCGCH,F={A,,..., A,}. Then we obtain,
for any a € A, X --+ X Ay, fou O fre © Qr(@) = foulfrc © Or(a)) =
for®F (@) = for(Qc(a™)) = Bu((a"®)") = By(a™) = ®ff(a), hence
Jor © fr = fru. ™

As a consequence, a direct limit of (Az, frg, F, G € I, F = G) exists.

An example of tensor products in a special category of D-posets can be
obtained as follows (Dvurecenskij and Pulmannova, 1994-a,b).

Let 7 = [0, 1] be endowed with the natural ordering and the difference
bOa=b—a,a b el ThenIis a D-poset. Any homomorphism m from
a D-poset A to [ is called a state on A. A set P of states on A is:

(1) separating if m{a) = m(b) for any m € P implies a = b.
(ii) full iff 9 is separating and if 2%, m(a;) = 1 for any m e P,
then @2, q; exists in A and DL, q; = 1.
(iii) order determining iff the condition m(a) < m(b) for all m ¢ P
implies a = b.
If % is order determining, then @ is full (DvureCenskij and Pulmannova,
1994-b).
Let (A;);<, be D-posets. We say that a couple X = (£, B), where & is
a nonvoid family of D-posets and % is a nonvoid family of n-morphisms on
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Ay X «-- X A, such that (i) for any B e B there exists a D-poset L & &
such that B: A; X -+ X A, -»> L, and (ii) for any L € & there is an n-
morphism B € B with B: A; X --- X A, — L, is said to be a consistent
class for (A));=,. In what follows, I1,., 4; := A, X -+ X A,.

Definition 2.15. Let X = (£, RB) be a consistent class for the D-posets
A, i = n. We say that a pair (R, T) consisting of a difference poset R and an
n-morphism 7: Il,=, A; = R is a tensor product of A,, i < n, in the class
H = (2, RB) iff the following conditions are satisfied:

i) Re ¥ 1e®B.
(ii) If L is a D-poset in &£, and B is a bimorphism in @&, B: Il,-,
A; — L, there exists a morphism ¢: R > Lsuchthat B = O 7.
(ili) Every element of R is a finite P-orthogonal sum of elements of
the form 7((a));<,) With a; € A;, i = n.

Similarly as above, if a tensor product (R, 7) of A;, i = n, exists in the
class ¥, it is unique up to an isomorphism. It is clear that if & consists of
all D-posets L for which there exists a bimorphism f: 11, A; — L and &
is the family of all those bimorphisms, then tensor products from Definitions
2.11 and 2.15 coincide.

Suppose that P; are nonempty families of states on difference posets
Ai=n Weset® =, P, and, if X = (\)i=, € P and (a);=, € I,=,
A; then M(@)i=n) 1= Mi(@)) =+ Ny(ay).

Theorem 2.16. Let P, i < n, be nonvoid systems of states on the D-
posets P;, i < n, respectively, P = [l,o, P,. Let £ be the set of all D-posets
L such that there is an n-morphism k: P, X .-+ X P, — L, and the set
Pe= {1 ® - Q€ Py i = n}is a full system of states on L,
where p; & -+ @ pu(k((@)i=s) := mi(a)) *+* paay), a; € Py, and let By
be the set of all these n-morphisms «’s. Then K = (£, By) is a consistent
class for P;, 1 = i = p, and there exists a tensor product of P, 1 =< [ = n.

Proof. Let X be the subset of I, A; consisting of all n-tuples (a,);<,
with @; # 0, Vi. f M = ((aD)i<p, - - - » (a¥);=y) is a finite sequence of elements
from X and A e P, we put

k
MM) = 21 M(@Di=y)
F=

with the understanding that if M = J, then N(M) = 0.

Define now the set & of all finite sequences 7 = ((af,i),sn)js,( such that
MT) = 1 for any A e P. Since A(1, ..., 1)) = 1, F is nonvoid. It is
easy to see that for any (@,);=, € X there is a finite sequence from &
containing (a,);<p-
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Denote by €(%) the set of all finite sequences ((a%);<,);<, such that J
C I and ((@)i=n)jer € F. We put ((a)i<)jco = 0.

For A, B € (%) we define A =~ B iff N\(A) = A(B) for any A € P.
Then = is an equivalence on €(%), and let m(aq) := {B € €(¥F): B ~ A}.
Let IT(X) := {m(A): A € €(%)}. We organize [1(X) into a poset by defining
a partial order = on II(X) as follows: w(A) = m(B), where A =
((@Dizn)jzis B = (BDizn)j=m, iff there is C = ((c))i = n)y=, € é(F) such
that M := ((a))i=n)j=i U ((¢]izn)y=s € €(F) and A\(M) = \(B) for any \ €
9. Then w(&) and w(T), where T e F is arbitrary, are the smallest and
greatest elements in TI(X).

The difference operation © on II{(X) is defined whenever w(A) = w(B),
and w(B) © mA) = w(C), where A, B, C satisfy the above conditions
for the partial ordering <. Then © is defined correctly, and II(X) is a
difference poset.

Define a mapping x¢: | .., A; = II(X) via

_ | m((a)i=n), (@)i=n € X
ko({aizn) {O, @)=y & X
Then kg is, evidently, an n-morphism. From the construction of II(X) we see
that any u e II(X) is of the form u = @;<; Ko((a))=,), and the mapping
(Orp)izn 1i» i € Py, i = n, on II(X) defined by

(®K0)i5n p“i(KO((ai)iSn) = }Ll(al) T “-‘n(an)9 a; € A[’ [=n

is a state on II(X). In addition, P, is a full system of states on II(X).
Therefore, £3 # (& and let By be the set of all n-morphisms k such that
maps I, A; into some L € £y and P, be a full system of states on L.
Then Ky = (£g, Byp) is a consistent class for A;, i = n.

We claim that (T1(X), ) is a tensor product of A;, i = n, in the class
Hp. Choose L € L and an n-morphism «: Il,-, A; = L. Since P, is full
for L, it follows that if ko((a)i=,) = Ko(a;)i<n), then x((a);<,)
k{(a});=,), and we can define a mapping ¢ such that d(ke((@)i=n) = K{((3)i=n),
a; € A;, | = n. We claim that we can extend ¢ to the whole TT(X) via ¢(u)
= @<, k((al)i=,), whenever u = @< ko((@))i=,), to a well-defined multi-
morphism. Indeed, let u = =y ko((@Di<n) = Dizm Ko((B)i=,) = v. Then ut
has the form u* = @, ko((cf);=,) and for all u; € P, i = n, we have

1= (®K())i_<_n H’i(u @ ul)
= (Rsplizn M) + (Bdizn Liu™)
= (®K0)isn pi(v) + (®Ko)i$n wi(ut)
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= ,; ISI piad) + ,,2 IJ wA(ch)

=2 [T wi®) + E I wicet)
; (®izn Pilk((@=y) + qg (® )i MK i)
= 2 @iz wl(B)iz) + g (®)in WK (CH)in)

Hence

D «(@hi=) ® D k(=) = 1 = §B K((BDizn) D D K (ch)izn)
=m g=s

k=m g=s

so that

j%g k((@d)izn) = g% K((B)i=r)

It is easy to check that & is the morphism in question, which proves the
assertion of the theorem. =

The tensor product (®g)i<, Ai, Rg) := (II(X), ko) of the D-posets A;,
i = n, in the class Ky is said to be a state tensor product of A;, i < n, with
respect to the state system P = II; P,. It is easy to check that an analog of
Theorem 2.13 holds for state tensor products. Also, if P, is order determining
for A; for each i < n, then ®g is a closed multimorphism.

Let €(H)), i < n, be sets of all effects on the Hilbert spaces H;, i < n,
respectively. Then they have order-determining sets of states. As a direct
generalization of Dvurecenskij and Pulmannova (1994-b) we obtain that the
state tensor product consists of all elements of the form 2, E{ ® -+- @ E,
where E; € €(H,), i = n, ® is the usual tensor product of operators, for
which there are FI® --- ® Fisuch that Z, F @ --- Q EL® 3, Fi & - -+
Q@ Fi =1 & -+ ®I, (all summations are over finite index sets).

Let A, t € T, be a system of D-posets such that for each t e 7, there
is an order-determining set %, of states. Then a directed system constructed
from state tensor products of these D-posets over finite subsets of 7 has the
property that every morphism fzr, E C F, is closed. This can be easily derived
from the construction of the state tensor products.

3. GENERALIZED AXIOMS FOR A SPACE OF HISTORIES

Gell-Mann and Hartle axioms postulated a new approach to quantum
theory in which the notion of “history” is ascribed a fundamental role, i.e.,
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a history may be an irreducible entity in its own right that is not necessarily
to be constructed as a time-ordered string of single-time propositions.
According to Isham (n.d.), these axioms and definitions are assentially as fol-
lows:

1. The fundamental ingredients in the theory are a space of histories
and a space of decoherence functionals, which are complex-valued functions
of pairs of histories.

2. The set of histories possesses a partial order =. If a = 3, then § is
said to be coarser than «, or a coarse-graining of «; dually, a is finer than
B, or a fine-graining of B. Heuristically this means that o possesses a more
precise specification than §.

3. There is a notion of two histories «, B to be disjoint, a L (3. Heuristi-
cally, if o L B, then if either o or B is “realized,” the other is “excluded.”

4. There is a unit history 1 (heuristically, the history that is always
realized) and a nudl history 0 (heuristically, the history that is never realized).
For all histories we have 0 = o =< 1.

5. Two histories, o, (8 that are disjoint can be combined to form a new
history o v B (heuristically, the history “a or 7).

6. A set of histories o, o?, ..., o is said to be exclusive if o/ 1 o/
foralli,j =1, 2,..., N. The set is exhaustive (or complete) if it is exclusive
andifa'! v --- vV = 1.

7. Any decoherence functional d satisfies the following conditions:

(@) dO, o) = 0 for all a.

(b) Hermicity: d(a, B) = d(B, o) for all «, B.

(¢) Positivity: d(x, o) = 0 for all a.

(d) Additivity: if « L B, then, for all vy, d(a v B) = d(a, y) + d(B, v).

(e) Normalization: If o}, o2, ..., & and B!, B> ..., BM are two
complete sets of histories then

b=
Mx

. dlod, By =1

J

i
I

i

It is important to note that this axiomatic scheme is given a physical interpreta-
tion only in relation to conmsistent sets of histories. A complete set C of
histories is said to be (strongly) consistent with respect to a particular decoher-
ence functional d if d(a, B) = 0 for all , B € C such that a # . Under
these circumstances, d(w, o) is given the physical interpretation as the proba-
bility that the history o will be “realized.” The Gell-Mann and Hartle axioms
then guarantee that the usual Kolmogoroff probability sum rules will be satis-
fied.



204 Pulmannova

Let us briefly summarize how “histories” are understood in the conven-
tional interpretation of an open Hamiltonian quantum system that is subject
to measurement by an external (classical) observer.

Let U(t,, ty) denote the unitary time-evolution operator from time #y to
t, ie., U, t5) = exp}—i(t; — to)H/R}. Then, in the Schrodinger picture,
the density operator state p(z) at time ¢, evolves in time ¢, — # to p(¢;), where

p(t) = Uty, to)p(to)U(t;, 1) = U(ty, to)p(to)U(t:, 1) ™" (3.1

Suppose that a measurement is made at time ¢, of a property represented by
a projection operator P. Then the probability that the property will be found is

Prob(P = 1; p(1,)) = tr(Pp(1,))
tr(PU(t, to)p(to) U, %))
te(P(21)p(10)) (3.2)

where
P(1)) := U, 1) P1))U(ty, 1) (3.3)

is, in the Heisenberg picture, an operator defined with respect to the time
t;. If the result of this measurement is kept, then according to the von
Neumann-Liiders “reduction” postulate, the appropriate density matrix to
use for any future calculation is

Prealts) 1= P o)) (3.4)

tr(P(2,)p(to))

Now suppose that a measurement is performed of a second observable 0 at
time t, > t;. Then, according to the above, the conditional probability of
getting @ = 1 at time 1, given that P = 1 was found at time #, [and that the
original state was p(fp)] is

Prob(Q = 1|P = 1 at 1,; p(ty)) = tr(Q(t2)peea(t1))

_ (Q@)P(t)p(t)P(11)
) (3-3)

The probability of getting P = 1 at #; and Q = 1 at ¢, is this conditional
probability multiplied by Prob(P = 1; p(ty)), i.e.,

Prob(P = 1 ats; and Q = 1 at 1; p(tp)) = w(Q(L)P(1)p(})P(1,))  (3.6)

Generalizing to a sequence of measurements of propositions o, o, ...,
o, at times ¢, &, ..., t,, the joint probability of finding all the associated
properties is
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Prob(a;,, = l att; and a,, = l at , and . . . o, = | at 1,; p(ty))
= tr(atn(tn) e arl(tl)p(IO)atl(tl) e at,,(tn)) (37)

where we used the relation P? = P for a projection operator.

The main assumption of the consistent histories interpretation of quantum
theory is that, under appropriate conditions, the probability assignment (3.7)
is still meaningful for a closed system, with no external observer or associated
measurement-induced state-vector reductions, The satisfaction or otherwise
of these conditions is determined by the behavior of the decoherence func-
tional d (o, B), which, for the pair of sequences of projection operators «
= (o, Ay, ... ) and B = (B, By - - -, By,)s is defined as

do(a, B) := tr(Cup(to)CE) (3.8
where
Ca = (xt,l([n) e atz(tZ)atl(tl)

U(IO’ tn)at,,U(tm tn—l) e U(t:'” t2)at2U(t27 tl)OL“U(t], tO) (39)

We note that the definition (3.8) satisfies the conditions 7(a)—(e) of a decoher-
ence functional.

Isham (n.d.) suggested to find, in the quantum logic approach, candidates
for the “history analogs™ of the standard Hamiltonian theory. To this aim, a
logic L of single-time propositions was considered. A history filter was
defined to be any finite sequence (o, ..., a,) of single-time propositions
o, € L which is time-ordered in the sense that t; < ¢, < --- < t,. Thus, in
the special case when L is identified with the lattice L(H) of projection
operators on a Hilbert space H, a history filter concides with the notion of
a “homogeneous history” in the Gell-Mann and Hartle approach. Also, it is
a time-labeled version of what Mittelstaedt and Stachow (1983; see also
Mittelstaedt, 1977, 1983) call a sequential conjunction, i.e., it corresponds
to the proposition “a,, is true at time ¢; and then «,, is true at time #, and
then . .. and then o, is true at time #,.” The phrase “history filter” is intended
to capture the idea that each single-time proposition «, in the collection
(o, ..., a,) serves to “filter out” the properties of the system that are
realized in the history of the universe.

1t is important to be able to manipulate history filters at different sets
of time points. To this end, it is useful to think of a history filter as something
that is defined at every time point but which is “active” only at a finite subset
of points. This can be realized mathematically (Isham, n.d.) by functions for
the space points T (the real line R) to the logic L with the property that each
map is equal to the unit single-time proposition for all but a finite set of ¢
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values. Also, we will consider all history filters containing the null single-
time proposition at a time ¢ as equivalent to a null history filter, which has
a null single-time proposition at all points ¢ € T and is appended to the
history filter space. It is clear that the temporal properties of a history filter
are encoded in the finite set of time points at which it is active, i.e., the
points ¢+ & T such that o, # 1. Let the set of all history filters be denoted
by AU(L). The set of t e T for which o, # 1 is called the temporal support,
or just support of a € U(L), and is denoted by o). The null history filter
has, by definition, a null support <.

The set of all possible temporal supports will be denoted by &; in our
case it is just the set of all finite subsequences {t;, ..., t,}, 1, < t, < ---
<t,of T=R.

The space ¥ of supports can be equipped with the structure of a partial
semigroup by saying that the support s, := (¢, &3, . . ., t,,) follows the support
§1:= (t, tp, ..., by if ¢, < #] and then defining the composition as

SIOS2=(tl""9tmti’-~-7tr’n)

The set U(L) can be endowed with the structure of partial semigroup
as well if we define © on AU(L) by the following rules: for a, B € U(L), o
= (0 - .5 0), B = (B -. ., Br)» @ OP is defined iff o(a) < o(B) and
aOB = (o, ..., 0, B ..., B Clearly, o(a O B) = ao(a) O o(B).

As a matter of convention, we define the null support to follow and
precede every element s € ¥, sothat € ©0,00a, @ O 1, 1 © a are defined
for all « € U(L) withvalues a 00 =00a =0, 01 =10 a = a,
respectively. Thus the unit history 1 serves as a unit element for the semigroup
structure and the null history O is an absorbing element.

In standard quantum theory, a natural “and” operation on a pair of history
filters o := (), ..., o) and B := (B, ..., B,) can be defined by

anB=anB),....@AB))

where (o A B), = a, A B, is the “and” operation on the lattice L = L(H).

In case that the quantum logic L is not a lattice, the operation “and”
can be only partially defined, i.e., a A B is defined iff o, A B, is defined
foreveryi = 1, 2, ..., n, in which case

aAB:i=((xAB)y ..., @APB))

For example, if B follows o, then a O B = a A B.
Summarizing, we obtain the following modified axioms of Isham:

HI1. The Space of History Filters. The fundamental ingredient in a theory
of histories is a space U of history filters or possible universes. This space
has the following structure.
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1. 9 is a partially ordered set with a unit history filter 1 and a null
history filter O such that 0 =< o < 1 for all a € .

2. 9 has a partial meet operation A sothat 1 Aa = aforalla € U
and 0 Ao =0foralla € U.

3. Al is a partial semigroup with composition law denoted O. If «,
B & AU can be combined to give a © B e AU, we say that B follows
a, o procedes (3, and write o <I B. If a O B is defined, then o O
B=anp

4. The null and unit histories can always be combined with any history
filter o to give

a0l =10ua =aq, a00=00a=0

H2. The Space of Temporal Supports. Any quasitemporal properties are
encoded in a partial semigroup ¥ of supports with unit ¢ . The support space
has the following properties:

1. There is a semigroup homomorphism o: U — & that assigns a
support to each history filter. The support of 0 and 1 is defined to
be & e .

2. A history filter a is nuclear if it has no nontrivial decomposition
of the form a = B O vy, B, v € 9; a temporal support is nuclear
if it has no nontrivial decomposition in the form s = s; O sy, sy,
s; € &. Nuclear supports are the analogs of points of time; nuclear
filters are the analogs of single-time propositions. A decomposition
ofa € Was o = a 0a?0---0aVis irreducible if the history
filters o, i = 1, 2, ..., N, are nuclear.

H3. The Space of History Events. The set of all histories % is a D-
poset generated by the set of all homogeneous histories. That is, 7 is a partially
ordered set with O and 1 as the least and greatest elements, respectively, with
a partially defined binary operation © such that § © « is defined iff o = 8
and (i) and (ii) of Remark 2.2 are satisfied. We say that histories o and
are disjoint (or orthogonal) if there is a history vy such that « = v © B. We
then write o © B = v, and a © B means, intuitively, “a or B.”

We note that a € B is always a coarse graining of o and B, but it need
not be the supremum of « and B. Similarly, B © « need not coincide with
the infimum of § and a*. The equality B = a @ (B © «) holds whenever
o =< 3 is an analog of the orthomodular law.

Let us assume that history filters corresponding to nuclear temporal
supports are elements of a D-poset L such that tensor products of any finite
number of copies of L exist. The nuclear temporal supports can be thought
of as elements of a set 7; then every temporal support corresponds to a finite
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subset F = {t, ..., t,}, L <tppb, <--»<r,of . Toeveryt € T, a copy L,
of L is assigned. A history filter is a finite sequence (a,, . . . , a,,) of elements
of L, corresponding to the temporal support (¢;, ..., t,) to points of T in
which the filter is “active.” We will map the history filter (a,,, ..., a,) to
the element g, @ -+ & a,, of the tensor product L, @ -+ & L,, where
L, = L for every 1, € T. The space of all histories then can be realized as
the direct limit of the directed system of all finite tensor products, (Lg, {frg:
Lr — Lg, F C G, F, G finite subsets of T}), where Ly = L, & --- ® L,
F=1(t,...,t,). Inorder not to lose information, it is appropriate to consider
a directed system (Lp {frg: Lr = Lg, F C G}) such that every frg is a
closed morphism. It can be realized if we consider a D-poset L which has
an ordering set of states, and state tensor products of copies of L.

Now let us return to the standard approach. Isham (n.d.) suggests the
following strategy. Let a = (e, . . ., @,) be a history filter with the support
(t1, ..., t,), where a,, i = n, are projections in a Hilbert space H. Let us
represent it with the product

By, o) =, Q- Qo

.....

.....
.....

algebras &,.(,,. .., B(H), for all supports (¢, ..., t,). It can be done by
using an infinite tensor product of copies of B(H).

Let () denote a family of unit vectors in the Cartesian product I, H,
of copies of H labeled by the time values ¢t € T; i.e., {) is a map from T to
the unit sphere in H. The infinite tensor product @L; H, based on ) is
defined to be the set of functions v: T — H such that v(f) = Q) for all but
a finite number of values ¢ The set of all such functions is given the usual
pointwise vector space structure by defining (ax + by)(#) = ax(t) + by(s),
a,beC xye ®L H,and the scalar product

x, ) = [I =@, yO)u

teT

where (-, +)y is the inner product in the Hilbert space H. It is well defined
because only a finite number of terms contribute to the product. It is a
standard result that the resulting space is a Hilbert space (Guichardet, 1972).
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An infinite tensor product @, B(H), is defined to be the weak closure
of the set of all functions from T to JB(H) that are equal to the unit operator
for all but a finite set of ¢ values.

Let (J, =) be the set of all temporal supports (¢, ..., ) C T, t, <
t; < --- <, partially ordered by set inclusion. For u € 7, let P(u) denote
the set of all projections in ®,., B(H),. Foru, v € F, u = v, let the mappings
fivt Rrew BH), = B,., B(H), be the ampliations [i.e., f,(®,, A,) acts as
A, on the coordinates ¢t € u, and as the unit operators on coordinates ¢t € V\u
on product vectors in &,., H,]. The restriction of f,, to P(u) maps P(u) to
Pv), and f,,: P(u) = P(v) is an injective homomorphism (of orthomodular
lattices). Moreover, (P(u), f,,: u, v € T, u < v) is a directed system. Let
(P, f: u € I) denote the direct limit.

Forevery u € J, ®,., P, can be considered as a well-defined projection
operator on the product space ®%, H,. Let g,: P(u) = LQL, H,), where
L(®fL, H,) is the projection lattice in @, H,. Clearly, g, © f,, = g.. Hence
@ can be embedded into L(®L, H).

A modification of a decoherence functional may be obtained as follows.
A decoherence functional is a function d: U X AU —> B satisfying the
following conditions:

(@) dO, o) = 0 for all a.

(b’) Hermicity: d(a, B) = d(B, ) for all a, B.

(c") Positivity: d(a, o) = 0 for all a.

(d')y Additivity: if a L B, then, for all y, d(o @ B) = d(a, v) + d(B, ).

(e') Normalization: If !, o?, ..., oV and B!, B% ..., B are two
complete sets of histories, then

N M ) )
2 3 dod, ) = 1

Then a decoherence functional behaves as a probability measure on any
consistent complete set of histories containing no element orthogonal to itself.
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